A Synthetic Lectin Analogue for Biomimetic Disaccharide Recognition

Y. Ferrand, M. P. Crump, A. P. Davis*

Science 2007, 318, 619-622


Carbohydrate recognition is biologically important but intrinsically challenging, for both nature and host-guest chemists. Saccharides are complex, subtly variable, and camouflaged by hydroxyl groups that hinder discrimination between substrate and water. We have developed a rational strategy for the biomimetic recognition of carbohydrates with all-equatorial stereochemistry (β-glucose, analogs, and homologs) and have now applied it to disaccharides such as cellobiose. Our synthetic receptor showed good affinities, not unlike those of some lectins (carbohydrate-binding proteins). Binding was demonstrated by nuclear magnetic resonance, induced circular dichroism, fluorescence spectroscopy, and calorimetry, all methods giving self-consistent results. Selectivity for the target substrates was exceptional; minor changes to disaccharide structure (for instance, cellobiose to lactose) caused almost complete suppression of complex formation.